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Introduction

Let X and Y be random variables on a probability space (neither of
them being constant with probability 1)

How to characterize by a numerical value the strength of
statistical dependence between X and Y ?

Fundamental problem that is well studied

Our focus is on continuous random variables

Key application

Approximate (estimate in an average least squares sense) one
random variable from the other
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Introduction

What would define a “good” measure?

Serves for comparison =⇒ range is arbitrary; can take it to be [0, 1]

Value lies between the two extremes:

10

Independence
Full 

dependence

◮ Person’s corr. coef.

◮ Person’s corr. ratio

◮ Ranyi’s max corr.

◮ Normalized MI

◮ Linfoot’s NMI

Key points

Exact numerical values can be “negotiated”... but not the extremes

Symmetric?
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Introduction

What would define a “good” measure?

Serves for comparison =⇒ range is arbitrary; can take it to be [0, 1]

Value lies between the two extremes:

10

Independence
Full 

dependence

If and only if !

× Person’s corr. coef.

× Person’s corr. ratio

× Ranyi’s max corr.

× Normalized MI

× Linfoot’s NMI

Key points

Exact numerical values can be “negotiated”... but not the extremes

Symmetric?
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What is known?

Pearson’s correlation coefficient (1880)

Approximate random variable Y as an affine function of random
variable X : Y = aX + b

ρ(X ↔ Y ) =
Cov(X,Y)

√

var(X )
√

var(Y )

|ρ(X ↔ Y )| works very well for Gaussian vector: extreme cases are
captured

LMMSE = E[e2]

= (1− ρ2(X ↔ Y ))var(Y )

|ρ(X ↔ Y ))| =

√

1−
LMMSE

var(Y )
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What is known?

Pearson’s correlation coefficient (1880)

How about non-Gaussian pairs?

Can still use MMSE estimator to approximate the random variable Y

as: Y = f (X ) where f (x) = E[Y |X = x ]

For jointly Gaussian case, reduces to the linear estimator
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Non Gaussian pair with non-linear MMSE estimator

Example

X ∼ U [−5, 5]

Z ∼ N (0, 10)

Y = X 3 + Z

−5 0 5
−150

−100

−50

0

50

100

150

X

Y

Domanovitz, Erez 7



Natural generalization of Pearson coefficient:
correlation ratio, Pearson (1909)

Person’s coefficient

LMMSE = E[e2]

|ρ(X ↔ Y ))| =

√

1−
LMMSE

var(Y )

Person’s correlation ratio

MMSE = E[e2]

= E[var(Y |X )]

θ(X → Y ) =

√

1−
MMSE

var(Y )
=

√

var(E[Y |X ])

var(Y )
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Natural generalization of Pearson coefficient:
correlation ratio, Pearson (1909)

Definition

The supremum over all (admissible) functions f of the correlation between
f (X ) and Y :

θ(X → Y ) = sup
f

ρ(f (X ) ↔ Y )

In words: measures how well Y can be approximated (in a mean
squared error sense) as a linear function of X ′ = f (X )

Does it satisfy the key requirements?
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Correlation ratio

Non-symmetric
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θ(X → Y)=0.97781
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θ(Y → X)=0.92914

While it bothered some people, we don’t take it as a major
drawback...
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Correlation ratio

“Equals zero too easily” =⇒ can vanish even when variables are
dependent

◮ X and Y are uniformly distributed over a circle of radius 1:
E[X |Y ]

E[Y |X ]

◮ Given X , E[Y |X ] = 0 for all X !

◮ =⇒ θ(X → Y ) =
√

var(E[Y |X ])
var(Y ) = 0...

Domanovitz, Erez 11



Correlation ratio

“Equals zero too easily” =⇒ can vanish even when variables are
dependent

◮ X and Y are uniformly distributed over a circle of radius 1:
E[X |Y ]

E[Y |X ]

◮ Given X , E[Y |X ] = 0 for all X !

◮ =⇒ θ(X → Y ) =
√

var(E[Y |X ])
var(Y ) = 0...

Detects well full dependence, may give false alarms
on independence
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Another attempt - maximal correlation

Definition

The supremum over all (admissible) functions f , g of the correlation
between f (X ) and g(Y ):

ρ∗∗
max

(X ↔ Y ) = sup
f ,g

ρ(f (X ) ↔ g(Y )).

General (admissible) 

function of X

General (admissible) 

function of Y

In words: measures how well Y ′ = g(Y ) can be approximated (in a
mean squared error sense) as a linear function of X ′ = f (X )

Known as Hirschfeld-Gebelein-Rényi (1935, 1941, 1959) maximal
correlation coefficient

Widely used since readily computable numerically via the alternating
conditional expectation (ACE) algorithm
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Rényi’s axioms

1 r(X → Y ) is defined for any pair of random variables X and Y

neither of them being constant with probability 1

2 r(X → Y ) = r(Y → X )

3 0 ≤ r(X → Y ) ≤ 1

4 r(X → Y ) = 0 if and only if X and Y are independent

5 r(X → Y ) = 1 if there is a strict dependence between X and Y ,i. e.,
either X = g(Y ) or Y = f (X ) where g(Y ) and f (X ) are
Borel-measurable functions

6 If the Borel-measurable functions f (X ) and g(Y ) map the real axis in
a one-to-one way onto itself, r(f (X ), g(Y )) = r(X ,Y )

7 If the joint distribution of X and Y is normal, then
r(X ,Y ) = |ρ(X ,Y )|

Maximal correlation satisfies all axioms
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Rényi’s axioms (1959)

1 r(X → Y ) is defined for any pair of random variables X and Y

neither of them being constant with probability 1

2 r(X → Y ) = r(Y → X )

3 0 ≤ r(X → Y ) ≤ 1

4 r(X → Y ) = 0 if and only if X and Y are independent

5 r(X → Y ) = 1 if (but not only if) there is a strict dependence
between X and Y ,i. e., either X = g(Y ) or Y = f (X ) where g(Y )
and f (X ) are Borel-measurable functions

6 If the Borel-measurable functions f (X ) and g(Y ) map the real axis in
a one-to-one way onto itself, r(f (X ), g(Y )) = r(X ,Y )

7 If the joint distribution of X and Y is normal, then
r(X ,Y ) = |ρ(X ,Y )|

But does it satisfy the key points?
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Maximal correlation

“With great power comes great responsibility...” (Ben Parker)

Solving the circle but fails on the square...

−1 0 1
−1

0

1

X

Y

The maximal correlation coefficient “equals one too easily”

Another example:
◮ Two random variables sharing the LSB

X = C +

N∑

i=1

Ai2
i ; Y = C +

N∑

i=1

Bi2
i

◮ Ai ,Bi ,C are mutually independent random variables
◮ f (X ) = g(Y ) = modulo 2 =⇒ ρ∗∗

max
(X ↔ Y ) = 1, for any value of N
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Maximal correlation

Rényi (1959)

Detects well independence, may give false alarms

on full dependence
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Behaviour at the limit

There exists a sequence (X (N),Y (N))
d
→ (X ,Y ) such that:

◮ For each element ρ∗∗
max

(X (N) ↔ Y (N)) = 1
◮ But ρ∗∗

max
(X ↔ Y ) = 0

Example 1: Shared LSB while taking (X (N)/2N ,Y (N)/2N)

Example 2:
N=3N=2 N=4
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Additional suggestions

Kimeldorf and Sampson (1978):

Definition

Approximate a monotone function of random variable Y as
a monotone function of X : g(Y ) = f (X )

ρmm
max

(X ↔ Y ) = sup
f ,g

ρ(f (X ) ↔ g(Y ))

In words: measures how well a monotone Y ′ = g(Y ) can be
approximated (in a mean squared error sense) as a linear function of a
monotone X ′ = f (X )

The measure still equals one too easily (fails in the square test...)
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Additional suggestions

Further, this may be too restrictive...

From “[Monotone Regression Splines in Action]: Comment”
published in Statistical Science by Hastie and Tibshirani (1988):

They wave symmetry

In fact, monotonicity is good, but not good enough...
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The semi-κ-monotone maximal correlation measure

Slightly improve Hastie and Tibshirani’s suggestion

Definition

For 0 ≤ κ ≤ 1, a function f is said to be κ-increasing, if for all x2 ≥ x1:

κ(x2 − x1) ≤ f (x2)− f (x1) ≤
1

κ
(x2 − x1)

Definition

For a given 0 < κ < 1, the semi-κ-monotone maximal correlation measure
is defined as

ρ∗mκ

max
(X → Y ) = sup

f ,g

ρ(f (X ) ↔ g(Y ))

where the supremum is taken over all admissible functions f (x), and over
κ-increasing admissible functions g(y).
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The semi-κ-monotone maximal correlation measure

κ = 0
Hastie and Tibshirani

κ = 1
Correlation ratio
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The semi-κ-monotone maximal correlation measure

Well, this is not symmetric anymore...

But, estimation is not a symmetric process

Obviously this does not satisfy Rényi’s axioms

Well... axioms can be modified...

We follow Hall (1967) and Liu (2014) and define the following
modified set of axioms

Domanovitz, Erez 21



Modified axioms

1 r(X → Y ) is defined for any pair of random variables X and Y

neither of them being constant with probability 1

2 r(X → Y ) may not be equal to r(Y → X )

3 0 ≤ r(X → Y ) ≤ 1

4 r(X → Y ) = 0 if and only if X and Y are independent

5 r(X → Y ) = 1 if and only if there is a strict dependence between X

and Y ,i. e., either X = g(Y ) or Y = f (X ) where g(Y ) and f (X )
are is a Borel-measurable function

6 If the Borel-measurable functions f (X ) and g(Y ) map the real axis in
a one-to-one way onto itself, r(f (X ),Y ) = r(X ,Y )

7 If the joint distribution of X and Y is normal, then
r(X ,Y ) = |ρ(X ,Y )|
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Modified axioms

1 r(X → Y ) is defined for any pair of random variables X and Y

neither of them being constant with probability 1

2 r(X → Y ) may not be equal to r(Y → X )

3 0 ≤ r(X → Y ) ≤ 1

4 r(X → Y ) = 0 if and only if X and Y are independent

5 r(X → Y ) = 1 if and only if there is a strict dependence between X

and Y ,i. e., either X = g(Y ) or Y = f (X ) where g(Y ) and f (X )
are is a Borel-measurable function

6 If the Borel-measurable functions f (X ) and g(Y ) map the real axis in
a one-to-one way onto itself, r(f (X ),Y ) = r(X ,Y )

7 If the joint distribution of X and Y is normal, then
r(X ,Y ) = |ρ(X ,Y )|

The semi-κ-monotone maximal correlation measure

satisfy these axioms
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Modified axioms

X r(X → Y ) is defined for any pair of random variables X and Y

neither of them being constant with probability 1

X r(X → Y ) may not be equal to r(Y → X )

X 0 ≤ r(X → Y ) ≤ 1

4 r(X → Y ) = 0 if and only if X and Y are independent

5 r(X → Y ) = 1 if and only if there is a strict dependence between X

and Y ,i. e., either X = g(Y ) or Y = f (X ) where g(Y ) and f (X )
are is a Borel-measurable function

6 If the Borel-measurable functions f (X ) and g(Y ) map the real axis in
a one-to-one way onto itself, r(f (X ),Y ) = r(X ,Y )

7 If the joint distribution of X and Y is normal, then
r(X ,Y ) = |ρ(X ,Y )|
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Axiom D: breaking the symmetry

X and Y are independent =⇒ r(X → Y ) = 0

Since ρ∗∗
max

(X ↔ Y ) ≥ ρ∗mκ

max
(X → Y )

If X ,Y are independent =⇒ ρ∗mκ

max
(X → Y ) = 0 (as so is even

ρ∗∗
max

(X ↔ Y ))

Domanovitz, Erez 24



Axiom D: breaking the symmetry

X and Y are dependant =⇒ r(X → Y ) 6= 0

ρ∗mκ

max
(X → Y ) ≥ θ(X → ga,κ(y))

Focus on the case where θ(X → Y ) = 0 and X ,Y are dependent

θ(X → Y ) = 0 =⇒ E[Y |X = x ] =
∫
p(y |x)ydy ≡ const

=⇒ var(E[Y |X ]) = 0

We may break the symmetry of g(y) = y by defining, e.g.,

ga,κ(y) =

{

y y ≥ a

κy y < a
, κ < 1 !!!

Dependence =⇒ two values x1 and x2 such that p(y |x1) 6≡ p(y |x2)

0 1 2
0

1

Y

P
(Y

|X
i)
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Axiom D: breaking the symmetry

X and Y are dependant =⇒ r(X → Y ) 6= 0

0 1 2
0

1

Y

P
(Y

|X
i)

a

Let a be a value such that
∫ a

p(y |x1)ydy 6=

∫ a

p(y |x2)ydy

=⇒ E[ga(Y )|X = x1] 6= E[ga(Y )|X = x2]

=⇒ θ(X → ga,κ(y)) > 0
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Modified axioms

X r(X → Y ) is defined for any pair of random variables X and Y

neither of them being constant with probability 1

X r(X → Y ) may not be equal to r(Y → X )

X 0 ≤ r(X → Y ) ≤ 1

X r(X → Y ) = 0 if and only if X and Y are independent

5 r(X → Y ) = 1 if and only if there is a strict dependence between X

and Y ,i. e., either X = g(Y ) or Y = f (X ) where g(Y ) and f (X )
are is a Borel-measurable function

6 If the Borel-measurable functions f (X ) and g(Y ) map the real axis in
a one-to-one way onto itself, r(f (X ),Y ) = r(X ,Y )

7 If the joint distribution of X and Y is normal, then
r(X ,Y ) = |ρ(X ,Y )|
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Axiom E

Y = f (X ) =⇒ ρ
∗mκ

max
(X → Y ) = 1

Y = f (X ) (almost surely) −→ g(Y ) = Y −→ ρ∗mκ

max
(X → Y ) = 1

ρ
∗mκ

max
(X → Y ) = 1 =⇒ Y = f (X )

For 0 <κ < 1 the supremum is attainable

=⇒ there is a perfect linear regression between g(Y ) and f ′(X ) (g , f ′

being maximizing functions of the measure):
◮ =⇒ g(Y ) = af ′(X ) + b where g is an increasing function with slope

greater than κ
◮ κ is strictly positive =⇒ g is invertible, and also g−1(Y ) has finite

variance (since the slope of g−1(Y ) is at most 1
κ
and Y has finite

variance)
◮ =⇒ Y = g−1(af ′(X ) + b) = f (X )
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Modified axioms

X r(X → Y ) is defined for any pair of random variables X and Y

neither of them being constant with probability 1

X r(X → Y ) may not be equal to r(Y → X )

X 0 ≤ r(X → Y ) ≤ 1

X r(X → Y ) = 0 if and only if X and Y are independent

X r(X → Y ) = 1 if and only if there is a strict dependence between X

and Y ,i. e., either X = g(Y ) or Y = f (X ) where g(Y ) and f (X )
are is a Borel-measurable function

X If the Borel-measurable functions f (X ) and g(Y ) map the real axis in
a one-to-one way onto itself, r(f (X ),Y ) = r(X ,Y )

7 If the joint distribution of X and Y is normal, then
r(X ,Y ) = |ρ(X ,Y )|

Domanovitz, Erez 27



Axiom G

X and Y jointly normal −→ r(X ,Y ) = |ρ(X ,Y )|

It is well known (Lancaster (1957)) that when X ,Y are jointly normal
with correlation coefficient ρ, then ρ∗∗

max
(X ↔ Y ) = |ρ|

=⇒ The maximal correlation is achieved taking g(y) = y (a
monotone function)

=⇒ f (x) = x or f (x) = −x =⇒

ρ∗mκ

max
(X → Y ) = ρ∗∗

max
(X ↔ Y )

= |ρ|
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Modified axioms

X r(X → Y ) is defined for any pair of random variables X and Y

neither of them being constant with probability 1

X r(X → Y ) may not be equal to r(Y → X )

X 0 ≤ r(X → Y ) ≤ 1

X r(X → Y ) = 0 if and only if X and Y are independent

X r(X → Y ) = 1 if and only if there is a strict dependence between X

and Y ,i. e., either X = g(Y ) or Y = f (X ) where g(Y ) and f (X )
are is a Borel-measurable function

X If the Borel-measurable functions f (X ) and g(Y ) map the real axis in
a one-to-one way onto itself, r(f (X ),Y ) = r(X ,Y )

X If the joint distribution of X and Y is normal, then
r(X ,Y ) = |ρ(X ,Y )|
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Interim summary

Key points for the semi-κ-monotone maximal correlation:
◮ Detects well both independence and full dependence (QUALITATIVE)

10

Independence
Full 

dependence

If and only if !
◮ Not symmetric, no problem...

Extreme values of κ:
◮ κ = 0 results in weak monotonicity (Hastie and Tibshirani)
◮ κ = 1 results in the correlation ratio
◮ Do not satisfy the modified axioms

The value of κ can be used to control how far we deviate from the
correlation ratio (QUANTITATIVE)
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What about an efficient algorithm to compute the
semi-κ-monotone maximal correlation?

Well...

The ACE algorithm suggested by Breiman and Friedman (1985) was
shown to calculate the maximal correlation measure

They showed that
◮ Optimal transformations exist
◮ Each iteration improves the measure
◮ The algorithm converges to the optimal transformations

Before showing modifications, let’s discuss the vector observation case
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Vector observation case

Let X = (X1, . . . ,Xp) be a vector of variables

The maximal correlation coefficient becomes

ρ∗∗
max

(X ↔ Y ) = sup
f ,g

ρ(f (X) ↔ g(Y ))

Following Breiman and Friedman, we also consider a simplified
(quasi-additive) relationship between Y and X:

g(Y ) =
∑

i

fi (Xi )

Breiman and Friedman provide conditions for the existence of optimal
transformations {fi}, g such that the supremum is attained are given,
and it is shown that under these conditions the ACE algorithm
converges to the optimal transformations
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Modified ACE algorithm

We begin by presenting a modification of the ACE algorithm to
compute the semi-0-monotone maximal correlation measure
ρ∗m0
max

(X → Y ), restricting the function applied to the response
variable only to be weakly monotone

We do not have an algorithm for computing the semi-κ-monotone
maximal correlation measure for κ 6= 0

Instead, we present a regularized version of the semi-0-monotone ACE
algorithm
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Calculating semi-0-monotone maximal correlation measure

High level overview:
◮ X ,Y ∈ H2 Hilbert space of finite-variance random variables

◮ H2(X ) = set of all random variables corresponding to an admissible
function of X (subspace of H2)

◮ H2(Y ) = set of all random variables corresponding to an admissible
function of Y (subspace of H2)

◮ M0(Y ) = non-decreasing admissible functions of Y (closed and
convex subset of H2(Y ))

Algorithm goal: minimize the angle between f (X ) ∈ H2(X ) and
g(Y ) ∈ M0(Y )

Per iteration: given f (X ), find g(Y ) ∈ M0(Y ) with smallest angle
⇐⇒ given f (X ), find g(Y ) ∈ M0(Y ) with smallest distance

And vice versa...

=⇒ At each iteration angle decreases
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Calculating semi-0-monotone maximal correlation measure

If g(Y ) ∈ M0(Y ) then ∀α > 0, αg(Y ) ∈ M0(Y ) =⇒ nearest point
satisfies orthogonality

Angle decreases at each iteration =⇒ convergence
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Calculating semi-0-monotone maximal correlation measure

Denote by PA(Y ) the orthogonal projection of Y onto the closed
convex set A

◮ PH2(X ) (g(Y )) = E [g(Y ) | X ]
◮ PM0(Y ) (f (X )) is called isotonic regression

Algorithm 1

1: procedure Calculate-Semi-0-monotone
2: Set g(Y ) = Y /‖Y ‖;
3: while e2(g , f ) decreases do
4: f ′(X ) = PH2(X ) (g(Y ))
5: replace f (X ) with f ′(X )
6: g ′(Y ) = PM0(Y ) (f (X ))
7: replace g(Y ) with g ′(Y )/‖g ′(Y )‖

8: End modified ACE
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Regularized ACE

To limit g(Y ) to have (lower and upper) slope κ, we apply:
g1(Y ) = g−1(Y ) + κ · Y

g(Y ) = g−1
1 (Y ) + κ · Y

Results in a slope lower bounded by κ and upper bounded by 1/κ+ κ

Algorithm 2

1: procedure Regularized-ACE

2: Set g(Y ) = Y /‖Y ‖;
3: while e2(g , f ) decreases do
4: f ′(X ) = PH2(X ) (g(Y ))
5: replace f (X ) with f ′(X )
6: g ′(Y ) = PM0(Y ) (f (X ))
7: replace g(Y ) with g ′(Y )/‖g ′(Y )‖

8: Apply regularization
9: End regularized ACE
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Examples

Example 1 - multi-variate example where one of the two observed
random variables masks the other even though the latter is more
useful for estimation purposes

Example 2 - Demonstration why correlation ratio (κ = 1) is
insufficient

◮ Example 2a - correlation ratio fails to detect dependence
◮ Example 2b - preferred parameterization (backup)

Example 3 - Semi-0-monotonicity is insufficient
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Example 1 - multi-variate example

Assume: Y ∼ U [0, 1]

X1 = mod(Y, 0.2) +N1

X2 = Y 3 + N2

where N1 ∼ N (0, 0.01), N2 ∼ N (0, 0.2)
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Example 1 - multi-variate example
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Figure: Example 1: Running ACE on Y and X1
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Example 1 - multi-variate example
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Figure: Example 1: Running ACE on Y and X2
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Example 1 - multi-variate example
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Figure: Example 1: Running ACE on Y , X1 and X2
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Example 1 - multi-variate example
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Figure: Example 1: modified ACE (Algorithm 1) on Y , X1 and X2 with κ = 0
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Example 2a - correlation ratio fails to detect dependence

X and Y are uniformly distributed over a circle with radius 1
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Figure: Transformation corresponding to the correlation ratio
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Example 2a - correlation ratio fails to detect dependence

X and Y are uniformly distributed over a circle with radius 1
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Figure: modified ACE (Algorithm 1) applied to Y and X1 with κ = 0
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Example 3 - Semi-0-monotonicity is insufficient

Y ∼ U [−10, 10]

X =

{

Y Y > 9

N1 otherwise

N1 ∼ U [−1, 1]
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Figure: Modified ACE applied to Y , X with κ = 0
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Example 3 - Semi-0-monotonicity is insufficient

Y ∼ U [−10, 10]

X =

{

Y Y > 9

N1 otherwise

N1 ∼ U [−1, 1]
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Figure: Regularized ACE applied to Y , X with κ = 0.1
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Thank you for your attention
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Backup
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Example 2b - preferred parameterization

Y ∼ U [0, 10]

X = log(Y ) + Z ; Z ∼ N (0, 1)
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Figure: Transformations corresponding to the correlation ratio
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Example 2b - preferred parameterization

Y ∼ U [0, 10]

X = log(Y ) + Z ; Z ∼ N (0, 1)
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Figure: Modified ACE (Algorithm 1) applied to Y , X and X2 with κ = 0
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What about mutual information?

Linfoot (1957):

L(X ,Y ) =
√

1− e−2I (X ;Y )

Was shown to satisfy all Rényi’s axioms

Suffers from the same deficiencies as the maximal correlation
measure...
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Problem 1

Simple example: X ∼ U [0, 1]; N ∼ U [0, 1]

Y =

{

X 0 < X < ε

N O/W

=⇒ When 0 < X < ε, Y is perfectly known

Define

Z = f (X ) =

{

1 if 0 < X < ε

0 O/W

Hence I (X ;Y ) = I (X ,Z ;Y )

= I (Z ;Y ) + I (X ;Y |Z )

= I (Z ;Y ) + Pr(Z = 0)I (X ;Y |Z = 0)
︸ ︷︷ ︸

>0

+ Pr(Z = 1)
︸ ︷︷ ︸

ε

I (X ;Y |Z = 1)
︸ ︷︷ ︸

∞

therefore when I (X ;Y ) = I (X ;Y |Z ) + I (X ;Y∞ =⇒ L(X ,Y ) = 1.
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Problem 2

Another reason - can’t be used for discrete variables since

I (X ;Y ) ≤ H(X )

I (X ;Y ) ≤ H(Y )

Therefore, even in case of full dependence

I (X ,Y ) < ∞ =⇒ L(X ;Y ) < 1
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